Mock modular Eisenstein series with Nebentypus

نویسندگان

چکیده

By the theory of Eisenstein series, generating functions various divisor arise as modular forms. It is natural to ask whether further systematically in mock We establish, using method Zagier and Zwegers on holomorphic projection, that this indeed case for certain (twisted) “small divisors” summatory [Formula: see text]. More precisely, terms weight 2 quasimodular series text] a generic Shimura theta function text], we show there constant which half integral (polar) form. These include combinatorial objects such Andrews text]-function “consecutive parts” partition function. Finally, analogy with Serre’s result text]-adic form, these forms possess canonical congruences

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MIXED MOCK MODULAR q-SERIES

Mixed mock modular forms are functions which lie in the tensor space of mock modular forms and modular forms. As q-hypergeometric series, mixed mock modular forms appear to be much more common than mock theta functions. In this survey, we discuss some of the ways such series arise.

متن کامل

Mock Modular Forms and Singular Combinatorial Series

upon specializing q = qτ := e 2πiτ , τ ∈ H the upper complex half-plane, where η(τ) := q1/24 ∏ n≥1(1 − qn) is Dedekind’s η-function, a weight 1/2 modular form. More recently, Bringmann and Ono [8] studied the generating function for partition ranks, where the rank of a partition, after Dyson, is defined to be the largest part of the partition minus the number of parts. For example, the rank of ...

متن کامل

EISENSTEIN SERIES TWISTED BY MODULAR SYMBOLS FOR THE GROUP SLn

We define Eisenstein series twisted by modular symbols for the group SLn, generalizing a construction of the first author [12, 13]. We show that, in the case of series attached to the minimal parabolic subgroup, our series converges for all points in a suitable cone. We conclude with examples for SL2 and SL3.

متن کامل

Eisenstein Series*

group GC defined over Q whose connected component G 0 Q has no rational character. It is also necessary to suppose that the centralizer of a maximal Q split torus of G0C meets every component of GC. The reduction theory of Borel applies, with trivial modifications, to G; it will be convenient to assume that Γ has a fundamental set with only one cusp. Fix a minimal parabolic subgroup P 0 C defin...

متن کامل

The simplest Eisenstein series

We explain some essential aspects of the simplest Eisenstein series for SL2(Z) on the upper half-plane H. There are many different proofs of meromorphic continuation and functional equation of the simplest Eisenstein series for Γ = SL2(Z). We will follow [Godement 1966a] rewriting of a Poisson summation argument that appeared in [Rankin 1939], if not earlier. This argument is the most elementar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Number Theory

سال: 2021

ISSN: ['1793-7310', '1793-0421']

DOI: https://doi.org/10.1142/s179304212040028x